2014
DOI: 10.1016/j.econ.2014.07.001
|View full text |Cite
|
Sign up to set email alerts
|

Earning differentials by occupational categories: Gender, race and regions

Abstract: Analyzing the income differentials amongst the Brazilian workers' occupations is the focus of this paper. Due to the wide diversity of occupations cataloged by the IBGE (around 800), a theoretical procedure is applied to reduce them to only seven in order to allow statistical treatment of the data. The methodological approach is based on Mincerian quantile equations to be estimated in various strata of the workers' income distribution, on which a breakdown is made to check the gap among the individuals' income… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
2
0
6

Year Published

2017
2017
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(8 citation statements)
references
References 26 publications
0
2
0
6
Order By: Relevance
“…Additionally, including US regional variation among wage premiums, as demonstrated by Arraes, Menezes, and Simonassi (2014) in a Brazilian context, could prove to be a fruitful avenue for future study, perhaps providing detailed insights about which jobs are "better" than others in different parts of the country and why. The fact that so many of the maximum and minimum premiums occurred in western and Midwestern counties might, for example, indicate that more centralized parts of the country experience greater variability among wage premiums even after controlling for occupations and city size.…”
Section: Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…Additionally, including US regional variation among wage premiums, as demonstrated by Arraes, Menezes, and Simonassi (2014) in a Brazilian context, could prove to be a fruitful avenue for future study, perhaps providing detailed insights about which jobs are "better" than others in different parts of the country and why. The fact that so many of the maximum and minimum premiums occurred in western and Midwestern counties might, for example, indicate that more centralized parts of the country experience greater variability among wage premiums even after controlling for occupations and city size.…”
Section: Resultsmentioning
confidence: 99%
“…Similarly, Baum-Snow and Pavan (2012) account for wage differences and job matching across city sizes without discussing differences within cities of similar sizes. Arraes, Menezes, and Simonassi (2014) investigate earnings differentials within occupational categories for International Journal of Regional Development ISSN 2373-9851 2017 regions of Brazil, but these regions are sorted geographically rather than by size. The apparent dearth of literature comprehensively examining within-size class wage premiums suggests that more research on this topic is needed.…”
Section: What Constitutes a "Good" Job In Rural Vs Urban Areas?mentioning
confidence: 99%
“…Na totalidade dos trabalhos, confirma-se a presença de discriminação no mercado de trabalho brasileiro, à medida que os diferenciais de rendimento não são explicados exclusivamente pelas distintas características individuais (ARRAES; MENEZES; SIMONASSI, 2014;BARTALOTTI;LEME, 2007;FREITAS FILHO, 2015…”
Section: Gap Salarial De Gênero: Uma Revisão Empíricaunclassified
“…; MEIRELES; SILVA;SAMPAIO, 2015;SALARDI, 2012;SANTOS, 2005;SALVATO;FRANÇA, 2013); as mulheres negras sempre aparecem em pior situação(BARTALOTTI;LEME, 2007). Adicionalmente, a decomposição detalhada confirma a relevância de características sociodemográficas, tais como educação, idade, setor de atividade e tipo de ocupação (ARRAES; MENEZES;SIMONASSI, 2014;BARTALOTTI;LEME, 2007;FREITAS FILHO, 2015;SILVA;SAMPAIO, 2015;SALARDI, 2012;SANTOS, 2005;SALVATO;FRANÇA, 2013).Alguns trabalhos estimam que o rendimento laboral feminino seria maior se o mercado de trabalho remunerasse de modo similar as características individuais de mulheres e homens(GALVÃO, 2015;SANTOS, 2005), o que seria especialmente verdadeiro nos estratos superiores de renda (BARTALOTTI; LEME, 2007; MEIRELES; para a média e os quantis, e têm como variável dependente o logaritmo do salário e diversas variáveis explicativas. Analogamente, ainda que características sociodemográficas (educação, experiência, setor de atividade, estado civil, ocupação, tamanho da empresa, maternidade, preferências por tipo de trabalho etc.)…”
unclassified
“…Mereka menduga, hasil yang tidak jauh berbeda ini disebabkan oleh kondisi sosial ekonomi negara-negara Amerika Latin yang relatif sama. Arraes et al (2014) menggunakan data survei rumah tangga di Brazil dan Meksiko dan menemukan tingkat pengembalian investasi pendidikan tinggi sebesar 11,2-13,2% sedangkan tingkat pengembalian investasi pendidikan rendah hanya sebesar 8,13-9,05%. Takasaki (2017) meneliti dampak gempa Fiji terhadap tingkat pengembalian investasi pendidikan dan menemukan bahwa tingkat pengembalian meningkat, dari kisaran 8% menjadi 10%.…”
Section: Pendidikan DI Indonesia Diatur Dalam Undang-undang Nomor 20 Tahun 2003 Tentang Sistemunclassified