2019
DOI: 10.1016/j.compstruc.2019.07.002
|View full text |Cite
|
Sign up to set email alerts
|

Easy pre/post-processing of finite elements with custom symbolic-objects: A self-expressive Python interface

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
3
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
4
2

Relationship

0
6

Authors

Journals

citations
Cited by 7 publications
(3 citation statements)
references
References 40 publications
0
3
0
Order By: Relevance
“…The API is presented in the form of several symbolic objects, among which the very core FE programming operations are abstracted through the use of metaprogramming and highlevel Python language functions. This method produces a concise and self-expression data presentation layer, which can be flexibly used to deal with different finite element discretization schemes [1].…”
Section: Related Workmentioning
confidence: 99%
“…The API is presented in the form of several symbolic objects, among which the very core FE programming operations are abstracted through the use of metaprogramming and highlevel Python language functions. This method produces a concise and self-expression data presentation layer, which can be flexibly used to deal with different finite element discretization schemes [1].…”
Section: Related Workmentioning
confidence: 99%
“…There are two main reasons why this framework is useful: Modular implementation : the algorithm can be implemented in both a small and finite strain FEM code, in order to handle different type of constitutive laws in the same modular way, hence avoiding to repeat pieces of code that perform the same tasks. This approach is important to fully leverage on modern object-oriented FEM codes Yilmaz (2019); New model development : the algorithm can be used to implement and develop new constitutive models, since the researcher can simply focus on the governing functions (with its first and second derivatives) and easily obtain the numerical algorithm, which is usually a tedious and tough task to fulfill. In particular, the proposed algorithm provides the tangent operators for the non-linear iterative schemes.…”
Section: Introductionmentioning
confidence: 99%
“…Modular implementation : the algorithm can be implemented in both a small and finite strain FEM code, in order to handle different type of constitutive laws in the same modular way, hence avoiding to repeat pieces of code that perform the same tasks. This approach is important to fully leverage on modern object-oriented FEM codes Yilmaz (2019);…”
Section: Introductionmentioning
confidence: 99%