The acute phase response (APR), coordinated by a complex network of components of the immune and neuroendocrine systems, plays a key role in early immune defense. This response can be elicited by a wide variety of pathogens at different intensities (frequencies and doses), hence experimental immune challenges with antigen gradients makes it possible to evaluate sickness progression with a better representation of what occurs in natural systems. However, how infection intensity could shape the APR magnitude in wild species is still poorly understood. Here, the immune response was activated in the subterranean rodent Ctenomys talarum with a gradient of lipopolysaccharide (LPS) doses (0.5, 1, 1.5, and 2 mg/kg of body mass). Changes in body temperature, body mass, and energetic costs were evaluated over time. We also assessed cortisol levels, white blood cells counts and neutrophil: lymphocyte ratios, before and after injection. Results indicated that during the APR, C. talarum shows a hyperthermic response, which is maintained for 6 h, with slight differences among antigen doses in the pattern of thermal response and body mass change. A maximum increase in body temperature of 0.83°C to 1.63°C was observed during the first hour, associated with a metabolic cost that ranged from 1.25 to 1.41 ml O2/gh. Although no clear effects of treatment were detected on leukocyte abundance, we found increments in neutrophil: lymphocyte ratios and gradual increases in cortisol levels corresponding to the intensity of simulated infection, which may indicate redistribution of immune cells and enhancement of immune function. An evident sickness syndrome was observed even at the lowest LPS dose that was characterized by an increase in body temperature, energy expenditure, and N: L ratio, as well as a dose‐dependent increase in cortisol levels. Although in nature, other constraints and challenges could affect the magnitude and costs of immune responses, C. talarum mounts an effective APR with a low increase in their daily energy expenditure, regardless of LPS dose.