Aim (1) To synthesize data on the physical and phylogeographical history of the Mexican highlands, with a focus on the Trans-Mexican Volcanic Belt (TMVB), and (2) to propose approaches and analyses needed for examining the interaction of climate and volcanism.Location Mexico.
MethodsWe performed a literature and data survey of the climatic, geological and phylogeographical history of the Mexican highlands. We then assessed how the expected effects of topographic isolation, co-occurring palaeoclimatic fluctuations and volcanism can be tested against the distribution of genetic diversity of high-elevation taxa.
ResultsThe Mexican highlands present a complex biogeographical, climatic and geological history. Montane taxa have been exposed to a sky-island dynamic through climate fluctuations, allowing for long-term in situ population persistence, while also promoting recent divergence and speciation events. Volcanic activity transformed part of the Mexican highlands during the Pleistocene, mainly in the TMVB, leading to co-occurring climate and topographical changes. The TMVB highlands provide a suitable template to examine how low-latitude mountains can facilitate both the long-term persistence of biodiversity as well as allopatric and parapatric speciation driven by climatic and geological events.Main conclusions Climate fluctuations, together with recent volcanism, have driven the diversification and local persistence of biodiversity within the Mexican highlands. The climate-volcanism interaction is challenging to study; however, this can be overcome by coupling genomic data with landscape analyses that integrate the geological and climatic history of the region.