Proceedings of the 37th Annual North American Power Symposium, 2005.
DOI: 10.1109/naps.2005.1560522
|View full text |Cite
|
Sign up to set email alerts
|

Economic power dispatch with non-smooth cost functions using differential evolution

Abstract: This paper presents the solution of economic dispatch problems that feature non-smooth cost functions by means of the Differential Evolution (DE) algorithm. This technique is particularly useful for optimization problems with non-convex, discontinuous, and non-differentiable solution spaces. The non-smooth cost functions arise in economic dispatch studies due to valve point loading effects, prohibited operating zones, and fuel switching effects. The proposed-DEbased economic dispatch solution methodology was v… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
13
0
2

Publication Types

Select...
6
1
1

Relationship

0
8

Authors

Journals

citations
Cited by 43 publications
(15 citation statements)
references
References 24 publications
0
13
0
2
Order By: Relevance
“…Since inception, DE has been employed in various science and engineering problem domains-neural network training [15,28,50,51,63], optimization of mechanical design [38], aerodynamic shape optimization problem [43,56], power transmission expansion planning [62], and economic dispatch problems for nonsmooth objective functions [49,69]. In the same vein, PSO has been used in diverse application areasdynamic economic dispatch problems [12], quadratic assignment problems [24], pole shape optimization [10], and neural networks training [9,21,35].…”
Section: Introductionmentioning
confidence: 99%
“…Since inception, DE has been employed in various science and engineering problem domains-neural network training [15,28,50,51,63], optimization of mechanical design [38], aerodynamic shape optimization problem [43,56], power transmission expansion planning [62], and economic dispatch problems for nonsmooth objective functions [49,69]. In the same vein, PSO has been used in diverse application areasdynamic economic dispatch problems [12], quadratic assignment problems [24], pole shape optimization [10], and neural networks training [9,21,35].…”
Section: Introductionmentioning
confidence: 99%
“…[26] 123670,00 124145,60 124900,00 -CEP [12] 123488,29 124793,48 126902,89 -FEP [12] 122679,71 124119,37 127245,59 -MFEP [12] 122647,57 123489,74 124356,47 -IFEP [12] 122624,35 123382,00 125740,63 -PSO [16] 123930,45 124154,49 --PSO-SQP [16] 122094,67 122245,25 --DEvol [27] 121412,91 121430,00 121464,40 -HDE [17] 121813 …”
Section: B Resultados Para O Primeiro Estudo De Caso -13 Geradores Eunclassified
“…A Tabela 2 mostra que os algoritmos propostos obtiveram o melhor valor para o custo mínimo de combustível. O algoritmo ICIS [21] [35] 123670,00 124145,60 124900,00 -CEP [32] 123488,29 124793,48 126902,89 -FEP [32] 122679,71 124119,37 127245,59 -MFEP [32] 122647,57 123489,74 124356,47 -IFEP [32] 122624,35 123382,00 125740,63 -PSO [22] 123930,45 124154,49 --PSO-SQP [22] 122094,67 122245,25 --DEvol [36] 121412,91 121430,00 121464,40 -HDE [24] 121813,26 122705,66 --ST-HDE [24] 121698,51 122304,30 --DE [25] 121416,29 121422,72 121431,47 -CDEMD [20] 121423 Os bons resultados obtidos pela versão paralela estimulam o uso de CUDA em outros algoritmos evolucionários, como por exemplo, outras versões de ED adaptativa (SaDE, Probability Matching, Adaptive Pursuit e Multi-armed Bandit). Outra possibilidade de trabalho futuro é a utilização do algoritmo desenvolvido neste trabalho em outros problemas complexos, como a Predição da Estrutura de Proteínas.…”
Section: Comparação Com a Literaturaunclassified