Melanoides tuberculata sensu lato (Thiaridae) are polymorphic female-clonal snails of Asian and African origins that have invaded freshwaters worldwide, including those in Florida. Although the snails have been documented in Florida for at least 70 years, no studies have investigated whether the observed distribution is due to a single introduction or multiple independent invasions. Here, cytochrome oxidase I was used to measure genetic diversity within and among sites in Florida and compare genetic diversity between Florida and other regions of the world. We also examined the relationship between shell morphology and haplotype diversity to determine if shell morphs can serve as a proxy for haplotypes. In total, we recovered 8 haplotypes randomly distributed across populations in Florida. Phylogenetic reconstruction supported the hypothesis of multiple invasions by diverse representatives of the M. tuberculata species complex. In contrast, shell morphology was not found to be a useful phylogeographic character, with divergent haplotypes represented by similar shell forms. These results suggest that the observed invasion patterns in Florida are best explained by serial introductions, and that shell morphology cannot be used to predict haplotypes or reconstruct invasion history of Melanoides tuberculata s.l. and that extensive taxonomic revisions are needed to investigate invasion dynamics.