Cell division plays an indispensable role in leaf morphogenesis, which is regulated via the complexes formed by cyclin and cyclin-dependent kinase (CDK). In this study, gene family analysis, exogenous auxin stimulation, RNA-seq and WGCNA analysis were all used to investigate the molecular mechanisms by which cell-cycle-related factors participated in the auxin signaling pathway on leaf morphogenesis. Sixty-three cyclin members and seventeen CDK members in Populus alba were identified and systematically analyzed. During the evolution, WGD was the main reason that resulted in the expansion of cyclin and CDK genes. Firstly, after a short time treating with auxin to matured leaves of seedlings, genes related to cell division including GRF and ARGOS were both upregulated to restart the transition of cells from G1-to-S phase. Secondly, with three days of continuous auxin stimulation to leaves at different developmental stages, leaves area variation, transcriptomes and hormones were analyzed. By PCA, PCoA and WGCNA analyses, the turquoise module was both positively related to leaf development and auxin. Based on the co-expression analysis and Y2H experiment, PoalbCYCD1;4, PoalbCYCD3;3 and PoalbCYCD3;5 were supposed to interact with PoalbCDKA;1, which could be the trigger to promote the G1-to-S phase transition. The ARF transcription factor might play the key role of connecting the auxin signaling pathway and cell division in leaf morphogenesis by affecting CYC–CDK complexes.