2017 IEEE 23rd International Symposium for Design and Technology in Electronic Packaging (SIITME) 2017
DOI: 10.1109/siitme.2017.8259941
|View full text |Cite
|
Sign up to set email alerts
|

Education 4.0 — Fostering student's performance with machine learning methods

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

1
75
0
10

Year Published

2019
2019
2022
2022

Publication Types

Select...
3
3
2

Relationship

0
8

Authors

Journals

citations
Cited by 107 publications
(86 citation statements)
references
References 6 publications
1
75
0
10
Order By: Relevance
“…A second aspect, highlighted by Frutos-Pascual and Zapirain, is machine learning. Ciolacu, Tehrani, and Beer [22] argue that machine learning in education will be the fourth revolution towards utilizing student data for improving learning quality and for accurately predicting academic achievements. Techniques for machine learning in serious games include Bayesian models, neural net-works, case-based reasoning, support vector machines, and cluster analyses.…”
Section: Game Ai and Serious Game Aimentioning
confidence: 99%
“…A second aspect, highlighted by Frutos-Pascual and Zapirain, is machine learning. Ciolacu, Tehrani, and Beer [22] argue that machine learning in education will be the fourth revolution towards utilizing student data for improving learning quality and for accurately predicting academic achievements. Techniques for machine learning in serious games include Bayesian models, neural net-works, case-based reasoning, support vector machines, and cluster analyses.…”
Section: Game Ai and Serious Game Aimentioning
confidence: 99%
“…With the purpose of enhancing safety of deaf people, the DADS alerts deaf people about alarming sounds and cautionary words by using a speech recognition engine and a sound recognition engine, which are implemented based on the Soundx algorithm and neural networks. Ciolacu et al [3] conduct analysis of estimating students' performance in examination with neural networks, support vector machine, decision trees, and cluster analysis. They also analyze the effectiveness of shaping the next generation's talent for Industry 4.0 skills with machine learning-related techniques.…”
Section: Related Workmentioning
confidence: 99%
“…1 https://classic.csunplugged.org/wpcontent/uploads/2014/12/CSUnpluggedTeachers-portuguese-brazil-feb-2011.pdf atividades práticas e acesso a modulos de aprendizagem; (4) Adaptabilidade: atividades adaptadas conforme o conhecimento e a aprendizagem do estudante; (5) Programas de Suporte: métodos de análise para encontrar alunos com diculdades; (6) Sistema de Perguntas e Respostas Inteligentes: teletutores inteligentes para apoiar os alunos; e (7) E-Avaliação: correção de trabalho automaticamente através de sistema . Estas facetas podem contribuir para o protagonismo do estudante, dinamizar os processos de ensino e aprendizagem e colaborar para a formação de competências necessárias para a vida no Século XXI [7].…”
Section: Introductionunclassified
“…faceta Personalização (criação de material didático preparado para atender diferentes tipos de aprendizagem) proposta por [7]. A partir do conceito de Computação Desplugada, desenvolveu-se um labirinto impresso com a finalidade de apoiar os estudantes no desenvolvimento de competências e habilidades do Século XXI.…”
Section: Introductionunclassified