High-resolution frequency methods were used to describe the spectral and topographic microstructure of human spontaneous alpha activity in the drowsiness (DR) period at sleep onset and during REM sleep. Electroencephalographic (EEG), electrooculographic (EOG), and electromyographic (EMG) measurements were obtained during sleep in 10 healthy volunteer subjects. Spectral microstructure of alpha activity during DR showed a significant maximum power with respect to REM-alpha bursts for the components in the 9.7-10.9 Hz range, whereas REM-alpha bursts reached their maximum statistical differentiation from the sleep onset alpha activity at the components between 7.8 and 8.6 Hz. Furthermore, the maximum energy over occipital regions appeared in a different spectral component in each brain activation state, namely, 10.1 Hz in drowsiness and 8.6 Hz in REM sleep. These results provide quantitative information for differentiating the drowsiness alpha activity and REM-alpha by studying their microstructural properties. On the other hand, these data suggest that the spectral microstructure of alpha activity during sleep onset and REM sleep could be a useful index to implement in automatic classification algorithms in order to improve the differentiation between the two brain states.