Therapeutic immobilization is a common treatment for the locomotor system; however, it causes loss of muscle due to disuse, leading to protein degradation and generating atrophy of muscle cells, ultimately changing functionality. In this sense, it is important for remobilization to be initiated early and performed with appropriate therapeutic strategies that enable tissue and functional recovery. One method of remobilization is physical exercise, among which whole body vibration (WBV) has been highlighted and mainly applied in people with reduced mobility. However, there are gaps on the morphological effects WBV has on muscle tissue, so in this study we analyzed the histomorphometry of the tibialis anterior muscle (TA) of Wistar rats remobilized using WBV. For the experiment, 32 male Wistar rats were used and divided into four groups (n = 8/group). Groups consisted of: control (CG), immobilized (IG), immobilized and remobilized freely (FG), and immobilized and remobilized with WBV (WG). After the experimental period, the TA was collected and processed for analysis in light microscopy. When compared to the control group, significant morphological changes were observed, which characterize muscle atrophy and reduction of all histomorphometric parameters of the TA of the immobilized animals. Remobilized animals showed improvement in all parameters, and the WBV was not different from the free remobilization, except for the reduction of central nuclei, which can be related to acceleration of the process of tissue regeneration. Thus, we can conclude that the WBV can have an impact on the acceleration of the muscle regenerative process, and may be beneficial in people with reduced mobility.