Objective To investigate the effects of low intensity laser (660nm), on the surae triceps muscle fatigue and power, during vertical jump in sedentary individuals, in addition to delayed onset muscle soreness.Methods We included 22 sedentary volunteers in the study, who were divided into three groups: G1 (n=8) without performing low intensity laser (control); G2 (n=7) subjected to 6 days of low intensity laser applications; and G3 (n=7) subjected to 10 days of low intensity laser applications. All subjects were evaluated by means of six evaluations of vertical jumps lasting 60 seconds each. In G2 and G3, laser applications in eight points, uniformly distributed directly to the skin in the region of the triceps surae were performed. Another variable analyzed was the delayed onset muscle soreness using the Visual Analog Scale of Pain.Results There was no significant difference in fatigue and mechanical power. In the evaluation of delayed onset muscle soreness, there was significant difference, being the first evaluation higher than the others.Conclusion The low intensity laser on the triceps surae, in sedentary individuals, had no significant effects on the variables evaluated.
In conclusion, swimming, a conservative treatment for peripheral nerve lesions, was not able to improve the nociception threshold in obese rats.
Objective To evaluate the effect of jumping in aquatic environment on nociception and in the soleus muscle of trained and not trained Wistar rats, in the treatment of compressive neuropathy of the sciatic nerve.Methods Twenty-five Wistar rats were distributed into five groups: Control, Lesion, Trained + Lesion, Lesion + Exercise, and Trained + Lesion + Exercise. The training was jumping exercise in water environment for 20 days prior to injury, and treatment after the injury. Nociception was evaluated in two occasions, before injury and seven after injury. On the last day of the experiment, the right soleus muscles were collected, processed and analyzed as to morphology and morphometry.Results In the assessment of nociception in the injury site, the Control Group had higher average than the rest, and the Lesion Group was larger than the Trained + Lesion and Lesion + Exercise Groups. The Control Group showed higher nociceptive threshold in paw, compared to the others. In the morphometric analysis, in relation to Control Group, all the injured groups showed decreased muscle fiber area, and in the Lesion Group was lower than in the Lesion + Exercise Group and Trained + Lesion Group. Considering the diameter of the muscle fiber, the Control Group had a higher average than the Trained + Lesion Group and the Trained + Lesion + Exercise Group; and the Lesion Group showed an average lower than the Trained + Lesion and Lesion + Exercise Groups.Conclusion Resistance exercise produced increased nociception. When performed prior or after nerve damage, it proved effective in avoiding hypotrophy. The combination of the two protocols led to decrease in diameter and area of the muscle fiber.
The aim of this study was to evaluate the effects of exercise in the aquatic environment, performed before and/or after sciatic nerve compression in Wistar rats on morphological and functional parameters. Twenty-five Wistar rats were divided into the following groups: control (C), lesion (L), trained+lesion (TL), lesion+exercise (LE), and training+lesion+exercise (TLE), who underwent right sciatic nerve compression on day 21 of the experiment. The TL and TLE groups were submitted to a jumping exercise in a water environment for 20 days prior to injury and the LE and TLE groups after injury. The functional analysis was carried out using the sciatic functional index (SFI). On the last day of the experiment, the right sciatic nerves were collected, processed and analysed according to morphology and morphometry. The C group showed higher SFI in relation to the other groups. In the morphometric analysis, in comparison to C, all groups showed a decrease in the diameter of the injured nerve fibre, the myelin sheath and an increase in the percentage of connective tissue. There was a decrease in axon diameter in L, TL, and LE groups and a decrease in the density of nerve fibres in the TL and LE groups. The exercise did not affect functional recovery. However, the exercise prior to the injury improved morphology of the nervous tissue, and when performed pre- and postinjury, there was also an improvement in nerve regeneration, but this was not the case with exercise performed after the injury demonstrating worse results.
This study aims to evaluate if ligature-induced periodontitis can potentiates the deleterious effects of immobilization in the skeletal striated muscle, contributing to the development of muscle atrophy due to disuse. Forty Wistar rats were divided into four groups: (1) Control Group (CG), (2) Periodontal Disease (PDG), (3) Immobilized (IG), and (4) Immobilized with Periodontal Disease (IPDG). Periodontal disease was induced for 30 days, with ligature method, and the immobilization was performed with cast bandage for 15 days. Prior to euthanasia, nociceptive threshold and muscular grasping force were evaluated. Afterwards, the soleus muscle was dissected and processed for sarcomere counting and morphological/morphometric analysis. For data analysis, was used the one-way ANOVA and post-test Tukey (p < 0.05). The IG and IPDG presented lower muscle weight, lower muscular grip strength, and less number of sarcomeres compared to CG. The PDG showed reduction of muscle strength and nociceptive threshold after 15 days of periodontal disease and increased connective tissue compared to CG. The IPDG presented lower muscle length and nociceptive threshold. The IG presented reduction in cross-sectional area and smaller diameter, increase in the number of nuclei and a nucleus/fiber ratio, decrease in the number of capillaries and capillary/fiber ratio, with increase in connective tissue. The IPDG had increased nucleus/fiber ratio, decreased capillaries, and increased connective tissue when compared to the IG. The IPDG presented greater muscle tissue degeneration and increased inflammatory cells compared to the other groups. Ligature-induced periodontitis potentiated the deleterious effects of immobilization of the skeletal striated muscle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.