Background
Out-of-hospital cardiac arrests (OHCAs) are stressful, high-stake events that are associated with low survival rates. Acute stress experienced in this situation is associated with lower cardiopulmonary resuscitation performance in calculating drug dosages by emergency medical services. Children are particularly vulnerable to such errors. To date, no app has been validated to specifically support emergency drug preparation by paramedics through reducing the stress level of this procedure and medication errors.
Objective
This study aims to determine the effectiveness of an evidence-based mobile app compared with that of the conventional preparation methods in reducing acute stress in paramedics at the psychological and physiological levels while safely preparing emergency drugs during simulated pediatric OHCA scenarios.
Methods
In a parent, multicenter, randomized controlled trial of 14 emergency medical services, perceived and physiologic stress of advanced paramedics with drug preparation autonomy was assessed during a 20-minute, standardized, fully video-recorded, and highly realistic pediatric OHCA scenario in an 18-month-old child. The primary outcome was participants’ self-reported psychological stress perceived during sequential preparations of 4 intravenous emergency drugs (epinephrine, midazolam, 10% dextrose, and sodium bicarbonate) with the support of the PedAMINES (Pediatric Accurate Medication in Emergency Situations) app designed to help pediatric drug preparation (intervention) or conventional methods (control). The State-Trait Anxiety Inventory and Visual Analog Scale questionnaires were used to measure perceived stress. The secondary outcome was physiologic stress, measured by a single continuous measurement of the participants’ heart rate with optical photoplethysmography.
Results
From September 3, 2019, to January 21, 2020, 150 advanced paramedics underwent randomization. A total of 74 participants were assigned to the mobile app (intervention group), and 76 did not use the app (control group). A total of 600 drug doses were prepared. Higher State-Trait Anxiety Inventory–perceived stress increase from baseline was observed during the scenario using the conventional methods (mean 35.4, SD 8.2 to mean 49.8, SD 13.2; a 41.3%, 35.0 increase) than when using the app (mean 36.1, SD 8.1 to mean 39.0, SD 8.4; a 12.3%, 29.0 increase). This revealed a 30.1% (95% CI 20.5%-39.8%; P<.001) lower relative change in stress response in participants who used the app. On the Visual Analog Scale questionnaire, participants in the control group reported a higher increase in stress at the peak of the scenario (mean 7.1, SD 1.8 vs mean 6.4, SD 1.9; difference: −0.8, 95% CI −1.3 to −0.2; P=.005). Increase in heart rate during the scenario and over the 4 drugs was not different between the 2 groups.
Conclusions
Compared with the conventional method, dedicated mobile apps can reduce acute perceived stress during the preparation of emergency drugs in the prehospital setting during critical situations. These findings can help advance the development and evaluation of mobile apps for OHCA management and should be encouraged.
Trial Registration
ClinicalTrials.gov NCT03921346; https://clinicaltrials.gov/ct2/show/NCT03921346
International Registered Report Identifier (IRRID)
RR2-10.1186/s13063-019-3726-4