Abstract. This study investigated the impacts of Mg-Hg-Ga alloys of various Ga/Hg ratios on phase constituents and electrochemical performance. The relationship between composition and phase constituents of the casting alloys were investigated by SEM and XRD Potentiodynamic polarization curves and the galvanostatic curves of the alloys in 3.5wt% NaCl solution were obtained. With a Ga/Hg ratio greater than 0.97, the second phase changes from Mg 3 Hg to Mg 5 Ga 2 , and the normal eutectic becomes a divorced eutectic. Additionally, corrosion is inhibited and passivation appears with an increase in the Ga/Hg ratio increase. With a starting Ga/Hg ratio of less than 0.68, the discharge process becomes steadier and discharge time simultaneiously increases with the Ga/Hg ratio. Mg-Hg-Ga alloys with a 0.68 Ga/Hg ratio are suitable as the anode material for seawater batteries.