The aim of this review is to summarise the evidence linking vitamin D to bone health outcomes in older adults. A plethora of scientific evidence globally suggests that large proportions of people have vitamin D deficiency and are not meeting recommended intakes. Older adults are at particular risk of the consequences of vitamin D deficiency owing to a combination of physiological and behavioural factors. Epidemiological studies show that low vitamin D status is associated with a variety of negative skeletal consequences in older adults including osteomalacia, reduced bone mineral density, impaired Ca absorption and secondary hyperparathyroidism. There seems to be inconsistent evidence for a protective role of vitamin D supplementation alone on bone mass. However, it is generally accepted that vitamin D (17 . 5 mg/ d) in combination with Ca (1200 mg/d) reduces bone loss among older white subjects. Evidence for a benefit of vitamin D supplementation alone on reducing fracture risk is varied. According to a recent Agency for Healthcare Research and Quality review in the USA the evidence base shows mixed results for a beneficial effect of vitamin D on decreasing overall fracture risk. Limitations such as poor compliance with treatment, incomplete assessment of vitamin D status and large drop-out rates however, have been highlighted within some studies. In conclusion, it is generally accepted that vitamin D in combination with Ca reduces the risk of non-vertebral fractures particularly those in institutional care. The lack of data on vitamin D and bone health outcomes in certain population groups such as diverse racial groups warrants attention.
25-hydroxyvitamin D: Vitamin D requirements: Older age: Bone mineral density: FracturesOsteoporosis is a condition characterised by a low bone mass and microarchitectural deterioration of bone with a consequent increase in bone fragility and susceptibility to fracture. In the UK, it is estimated that 3 million people are affected with osteoporosis. Furthermore, one in two British women and one in five British men aged > 50 years will experience an osteoporotic fracture in their lifetime with the estimated costs in the UK being about £1 . 7 billion annually. In the European Union, it has been estimated that previous and incident fractures accounted for 1 180 000 quality-adjusted life years lost during 2010 (1) . Furthermore, with an ageing population, the costs associated with treating osteoporosis in the EU are expected to increase by 25% in 2025(1) . Bone is a dynamic tissue that responds to the external and internal environments to which it is exposed during an individual's lifetime. While a considerable proportion (up to 70%) of the inter-individual variation in bone mass is genetically determined, lifestyle factors such as diet and exercise are well established modifiable factors of bone mass. Bone turnover is important for the self-repair of skeletal tissue (2) as well as maintaining mineral homoeostasis (e.g. Ca and P) and the balance between the rate of bone formation ...