For the first time, we synthesized multiple embedded polar groups (EPGs) containing linear C18 organic phases. The new materials were characterized by elemental analysis, IR spectroscopy, (1)H NMR, diffuse reflectance infrared Fourier transform (DRIFT), solid-state (13)C cross-polarization magic angle spinning (CP/MAS) NMR, suspended-state (1)H NMR, and differential scanning calorimetry (DSC). (29)Si CP/MAS NMR was carried out to investigate the degree of cross-linking of the silane and silane functionality of the modified silica. Solid-state (13)C CP/MAS NMR and suspended-state (1)H NMR spectroscopy indicated a higher alkyl chain order for the phase containing four EPGs than for the phase with three EPGs. To correlate the NMR results with temperature-dependent chromatographic studies, standard reference materials (SRM 869b and SRM 1647e), a column selectivity test mixture for liquid chromatography was employed. A single EPG containing the C18 phase was also prepared in a similar manner to be used as a reference column especially for the separation of basic and polar compounds in reversed-phase liquid chromatography (RPLC) and hydrophilic interaction liquid chromatography (HILIC), respectively. Detailed chromatographic characterization of the new phases was performed in terms of their surface coverage, hydrophobic selectivity, shape selectivity, hydrogen bonding capacity, and ion-exchange capacity at pH 2.7 and 7.6 for RPLC as well as their hydrophilicity, the selectivity for hydrophilic-hydrophobic substituents, the selectivity for the region and configurational differences in hydrophilic substituents, the evaluation of electrostatic interactions, and the evaluation of the acidic-basic nature for HILIC-mode separation. Furthermore, peak shapes for the basic analytes propranolol and amitriptyline were studied as a function of the number of EPGs on the C18 phases in the RPLC. The chromatographic performance of multiple EPGs containing C18 HILIC phases is illustrated by the separation of sulfa drugs, β-blockers, xanthines, nucleic acid bases, nucleosides, and water-soluble vitamins. Both of the phases showed the best performance for the separation of shape-constrained isomers, nonpolar, polar, and basic compounds in RPLC- and HILIC-mode separation of sulfa drugs, and other polar and basic analytes compared to the conventional alkyl phases with and without embedded polar groups and HILIC phases. Surprisingly, one phase would be able to serve the performance of three different types of phases with very high selectivity, and we named this phase the "smart phase". Versatile applications with a single column will reduce the column purchasing cost for the analyst as well as achieve high separation, which is challenging with the commercially available columns.