Distinct from inert bulk gold, nanoparticulate gold has been found to possess remarkable catalytic activity towards oxidation reactions. The catalytic performance of nanoparticulate gold strongly depends on size and support, and catalytic activity usually cannot be observed at characteristic sizes larger than 5 nm. Interestingly, significant catalytic activity can be retained in dealloyed nanoporous gold (NPG) even when its feature lengths are larger than 30 nm. Here we report atomic insights of the NPG catalysis, characterized by spherical-aberration-corrected transmission electron microscopy (TEM) and environmental TEM. A high density of atomic steps and kinks is observed on the curved surfaces of NPG, comparable to 3-5 nm nanoparticles, which are stabilized by hyperboloid-like gold ligaments. In situ TEM observations provide compelling evidence that the surface defects are active sites for the catalytic oxidation of CO and residual Ag stabilizes the atomic steps by suppressing {111} faceting kinetics.
Continuous porous silica rods consisting of a mesoporous (pore size, 14 or 25 nm) silica skeleton of ∼1 μm size and through-pores of ∼1.7 μm were prepared and derivatized to C(18) phase by on-column reaction with octadecyldimethyl-(N,N-diethylamino)silane. The C(18) silica rods gave plate heights of 10-20 μm for aromatic hydrocarbons in 80% methanol and 20-40 μm for insulin in acetonitrile-water mixtures in the presence of trifluoroacetic acid. The performance of the silica rods was much better at a high flow rate than that of conventional columns packed with 5 μm C(18) silica particles having 12 and 30 nm pores, especially for high molecular weight species.
Sputter deposition of gold (Au) onto ionic liquids (ILs) resulted in the formation of highly dispersed Au nanoparticles without additional chemical species, such as reducing and∕or stabilizing agents. The Au nanoparticles in 1-ethyl-3-methylimidazolium tetrafluoroborate had an average diameter (dav) of 5.5nm with a standard deviation (σ) of 0.86nm, while sputter deposition onto N,N,N-trimethyl-N-propylammonium bis(trifluoromethanesulfonyl)imide resulted in the formation of much smaller Au nanoparticles with dav of 1.9nm and σ of 0.46nm. Prolongation of sputtering time results in a higher concentration of Au nanoparticles in ILs, but did not cause a remarkable change in their size.
Sol-gel processes for fabricating oxides or metalloxane polymers with controlled porous structures have been reviewed. Gel materials having controlled macropores are synthesized by polymerization-induced phase separation and concurrent sol-gel transition in a variety of chemical compositions. Several variations of tailoring mesopore structures within the macroporous materials are introduced, which enable one to design hierarchically porous metal oxide and metalloxane polymer materials. Applications of monolithic silica gels having hierarchical macro/mesoporous structure to the separation media of high-performance liquid chromatography, HPLC, are described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.