First-principles calculations based on density functional theory (DFT) have been performed to explore the effects of Si, Cr, W, and Nb elements on the stability, mechanical properties, and electronic structures of MoAlB ternary boride. The five crystals, with the formulas of Mo4Al4B4, Mo4Al3SiB4, Mo3CrAl4B4, Mo3WAl4B4, and Mo3NbAl4B4, have been respectively established. All the calculated crystals are thermodynamically stable, according to the negative cohesive energy and formation enthalpy. By the calculation of elastic constants, the mechanical moduli and ductility evolutions of MoAlB with elemental doping can be further estimated, with the aid of B/G and Poisson’s ratios. Si and W doping cannot only enhance the Young’s modulus of MoAlB, but also improve the ductility to some degree. Simultaneously, the elastic moduli of MoAlB are supposed to become more isotropic after Si and W addition. However, Cr and Nb doping plays a negative role in ameliorating the mechanical properties. Through the analysis of electronic structures and chemical bonding, the evolutions of chemical bondings can be disclosed with the addition of dopant. The enhancement of B-B, Al/Si-B, and Al/Si-Mo bondings takes place after Si substitution, and W addition apparently intensifies the bonding with B and Al. In this case, the strengthening of chemical bonding after Si and W doping exactly accounts for the improvement of mechanical properties of MoAlB. Additionally, Si doping can also improve the Debye temperature and melting point of the MoAlB crystal. Overall, Si element is predicted to be the optimized dopant to ameliorate the mechanical properties of MoAlB.