The Cattaneo–Christov heat flux is first utilized to explore the heat transfer characteristics of Marangoni boundary layer flow in a copper–water nanofluid. The Marangoni boundary layer flow is driven by exponential temperature. Five different types of nanoparticle shapes including sphere, hexahedron, tetrahedron, column and lamina are considered for the copper–water nanofluid. The nonlinear system of partial differential equations is reduced by similarity transformations and then solved numerically by the shooting method. It is found that sphere nanoparticle has better heat transfer enhancement than other nanoparticle shapes and both the temperature and the thickness of the thermal boundary layer are lower for the Cattaneo–Christov heat flux model than the classical Fourier's law of heat conduction.