Pure nanocrystalline SnO2 films were grown on a clean glass substrate by using sol–gel dip coating and chemical bath deposition (CBD) techniques for gas sensor applications. The films were annealed in air at 300[Formula: see text]C, 400[Formula: see text]C, and 500[Formula: see text]C for 60[Formula: see text]min. The deposited films with a thickness of approximately 300 [Formula: see text] 20 nm were analyzed through X-ray diffraction, scanning electron microscopy (SEM), atomic force microscopy (AFM), and optical absorption spectroscopy. Results revealed that the films produced by dip coating exhibited a tetragonal rutile structure and those produced by CBD showed a tetragonal rutile and orthorhombic structure. The crystalline sizes of the films produced by dip coating annealed at 300[Formula: see text]C, 400[Formula: see text]C, and 500[Formula: see text]C were 8, 14, and 22.34 nm and those for CBD films at these temperatures were 10, 15, and 22 nm, respectively. AFM and SEM results indicated that the average grain size increased as annealing temperature increased. The transmittance and absorbance spectra were then recorded at wavelengths ranging from 300[Formula: see text]nm to 1000[Formula: see text]nm. The films produced by both the methods yielded high transmission at visible regions. The optical band gap energy of dip-coated films also increased as annealing temperature increased. In particular, their optical band gap energies were 3.5, 3.75, and 3.87[Formula: see text]eV at 300[Formula: see text]C, 400[Formula: see text]C, and 500[Formula: see text]C, respectively. By comparison, the energy band gap of CBD-prepared films decreased as annealing temperature increased, and their corresponding band gaps were 3.95, 3.85, and 3.8[Formula: see text]eV at the specified annealing temperatures. The films were further investigated in terms of their sensing abilities for carbon monoxide (CO) gas at 50 ppm by measuring their sensitivity to this gas at different times and temperatures. Our results demonstrated that dip-coated and CBD-prepared films were highly sensitive to CO at 200[Formula: see text]C and 250[Formula: see text]C, respectively.