We develop an open-aperture ͑OA͒ Z scan and nonlinear transmission theory of two-photon-induced excited-state absorption, under the excitation of spatial Gaussian laser pulses with temporal Gaussian and hyperbolic secant profiles. The found analytic expressions allow us to straightforwardly fit the OA Z-scan trace and the nonlinear transmission curve, for convenient extraction of the nonlinear absorption coefficients. As a test, the two-photon-induced excited-state absorption in a chalcone derivative of 3,4-dimethoxy-4Ј-fluorochalcone is explored by performing femtosecond Z-scan measurement and is analyzed by our theory.
By performing both Z-scan and transient transmission measurements with 130 fs laser pulses in the near infrared region, we investigated structure-property relationships for χ(3) in acceptor-substituted 3,4,5-trimethoxy chalcone derivatives. We determined all nonlinear parameters, including two-photon absorption (2PA) cross section, 2PA-induced excited-state absorption (ESA) cross section, microscopic second-order hyperpolarizability, and lifetime of the excited state in these molecules. We found that the microscopic second-order hyperpolarizability γR and 2PA cross section σ2PA in chalcone derivatives increase as the acceptor strength of the molecules increases, which demonstrates an enhancement in optical nonlinearities by simple structural variations. We evaluated the one-photon, two-photon, and effective three-photon figures of merit for acetone solutions of chalcone derivatives at irradiance of 100 GW/cm2. Furthermore, we observed optical limiting behavior in these compounds, which result from both 2PA and 2PA-assisted ESA. These results indicated that chalcone derivatives are a promising candidate for applications on nonlinear photonic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.