This paper presents a classic process-structure-properties approach for optimizing the magnetic properties of electrical steels. Cold-rolled non-oriented electrical steel (Fe; 0.001 wt% C; 0.2 wt.% Mn; 1.3 wt% Si) was subjected to extremely short 3-30 seconds annealing cycles in a range from 880°C to 980°C with a heating rate varying from 15°C to 300°C/sec. The resulting microstructure was studied by means of optical microscopy and X-ray orientation distribution function analysis. Recrystallized grains were refined with increased heating rate, caused by the nucleation rate increase, which is faster than the growth rate due to rapid heating. The optimal grain size of 60 to 80 mm in terms of magnetic properties was obtained by increasing the annealing temperature range to 920°C to 940°C with a higher heating rate of 300°C/sec and an annealing time of 6 to 9 seconds. With the heating rate increase, the characteristic {111} recrystallization fiber of cold-rolled steel was depressed, but the beneficial {110}<001> Goss texture component was significantly strengthened. The recrystallized grain size and texture were enhanced by rapid annealing, and, as a result, the magnetic properties of non-oriented electrical steel improved.