Normal water structures are maintained largely by interactions with biomacromolecular surfaces and weak electromagnetic fields, which enable extended networks for electron and proton conductivity. All standard chemistry is totally reliant on electrostatics and avoids all mention of electrodynamics and the consequent radiation field, which is supporting the notion of water as a primary mediator of biological effects induced via electromagnetic means into living systems. Quantum Electrodynamic (QED) field theory have produced a vision of water in a liquid state as a medium, which for a peculiarity of its molecular electronic spectrum reveals itself as an essential tool for long-range communications, being able to change its supra-molecular organization in function of the interaction with the environment. This paper draws attention to the fact that interfacial water (nanoscale confined water) has been shown, independently by Emilio Del Giudice et al. and by Gerald Pollack et al., to contain respectively Coherence Domains (CDs) and Exclusion Zones (EZs), which may be regarded as long-range ensembles of CDs, dynamic aqueous structures, which uses the special properties of water, such as its electron/proton dynamics and organized response to electromagnetic fields, to receive electromagnetically encoded signals endowed with coherence (negentropy) at a low frequency, and sum the resultant excitations, so as to foster the redistribution of that coherence at frequencies which may affect biological systems. The phase transition of water from the ordinary coherence of its liquid state (bulk water) to the semi-crystalline or glassy and super-coherent How to cite this paper: Messori, C. (2019) Deep into the Water: Exploring the Hydro-Electromagnetic and Quantum-Electrodynamic Properties of Interfacial