Aqueous suspensions of microspheres were infused around gels of varying composition. The solutes were excluded from zones on the order of 100 microm from the gel surface. We present evidence that this finding is not an artifact, and that solute-repulsion forces exist at distances far greater than conventional theory predicts. The observations imply that solutes may interact over an unexpectedly long range.
While recent research on interfacial water has focused mainly on the few interfacial layers adjacent to the solid boundary, century-old studies have extensively shown that macroscopic domains of liquids near interfaces acquire features different from the bulk. Interest in these long-range effects has been rekindled by recent observations showing that colloidal and molecular solutes are excluded from extensive regions next to many hydrophilic surfaces [Zheng and Pollack Phys. Rev. E 2003, 68, 031408]. Studies of these aqueous "exclusion zones" reveal a more ordered phase than bulk water, with local charge separation between the exclusion zones and the regions beyond [Zheng et al. Colloid Interface Sci. 2006, 127, 19; Zheng and Pollack Water and the Cell: Solute exclusion and potential distribution near hydrophilic surfaces; Springer: Netherlands, 2006; pp 165-174], here confirmed using pH measurements. The main question, however, is where the energy for building these charged, low-entropy zones might come from. It is shown that radiant energy profoundly expands these zones in a reversible, wavelength-dependent manner. It appears that incident radiant energy may be stored in the water as entropy loss and charge separation.
Single myofibrils were isolated from chemically skinned rabbit heart and mounted in an apparatus described previously (Fearn et al., 1993; Linke et al., 1993). We measured the passive length-tension relation and active isometric force, both normalized to cross sectional area. Myofibrillar cross sectional area was calculated based on measurements of myofibril diameter from both phase-contrast images and electron micrographs. Passive tension values up to sarcomere lengths of approximately 2.2 microns were similar to those reported in larger cardiac muscle specimens. Thus, the element responsible for most, if not all, passive force of cardiac muscle at physiological sarcomere lengths appears to reside within the myofibrils. Above 2.2 microns, passive tension continued to rise, but not as steeply as reported in multicellular preparations. Apparently, structures other than the myofibrils become increasingly important in determining the magnitude of passive tension at these stretched lengths. Knowing the myofibrillar component of passive tension allowed us to infer the stress-strain relation of titin, the polypeptide thought to support passive force in the sarcomere. The elastic modulus of titin is 3.5 x 10(6) dyn cm-2, a value similar to that reported for elastin. Maximum active isometric tension in the single myofibril at sarcomere lengths of 2.1-2.3 microns was 145 +/- 35 mN/mm2 (mean +/- SD; n = 15). This value is comparable with that measured in fixed-end contractions of larger cardiac specimens, when the amount of nonmyofibrillar space in those preparations is considered. However, it is about 4 times lower than the maximum active tension previously measured in single skeletal myofibrils under similar conditions (Bartoo et al., 1993).
In this report we characterized the longitudinal elasticity of single actin filaments manipulated by novel silicon-nitride microfabricated levers. Single actin filaments were stretched from zero tension to maximal physiological tension, P(0). The obtained length-tension relation was nonlinear in the low-tension range (0-50 pN) with a resultant strain of approximately 0.4-0.6% and then became linear at moderate to high tensions (approximately 50-230 pN). In this region, the stretching stiffness of a single rhodamine-phalloidin-labeled, 1-microm-long F-actin is 34.5 +/- 3.5 pN/nm. Such a length-tension relation could be characterized by an entropic-enthalpic worm-like chain model, which ascribes most of the energy consumed in the nonlinear portion to overcoming thermal undulations arising from the filament's interaction with surrounding solution and the linear portion to the intrinsic stretching elasticity. By fitting the experimental data with such a worm-like chain model, an estimation of persistence length of approximately 8.75 microm was derived. These results suggest that F-actin is more compliant than previously thought and that thin filament compliance may account for a substantial fraction of the sarcomere's elasticity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.