Consecutive outbreaks of acute aflatoxicosis in Kenya in 2004 and 2005 caused > 150 deaths. In response, the Centers for Disease Control and Prevention and the World Health Organization convened a workgroup of international experts and health officials in Geneva, Switzerland, in July 2005. After discussions concerning what is known about aflatoxins, the workgroup identified gaps in current knowledge about acute and chronic human health effects of aflatoxins, surveillance and food monitoring, analytic methods, and the efficacy of intervention strategies. The workgroup also identified public health strategies that could be integrated with current agricultural approaches to resolve gaps in current knowledge and ultimately reduce morbidity and mortality associated with the consumption of aflatoxin-contaminated food in the developing world. Four issues that warrant immediate attention were identified: a) quantify the human health impacts and the burden of disease due to aflatoxin exposure; b) compile an inventory, evaluate the efficacy, and disseminate results of ongoing intervention strategies; c) develop and augment the disease surveillance, food monitoring, laboratory, and public health response capacity of affected regions; and d) develop a response protocol that can be used in the event of an outbreak of acute aflatoxicosis. This report expands on the workgroup’s discussions concerning aflatoxin in developing countries and summarizes the findings.
A novel in situ autoreduction route has been developed, by which monodispersed silver nanoparticles with tunable sizes could be easily fabricated on silica-based materials, especially inside the channels of mesoporous silica (MPS). 13C CP/MAS NMR spectroscopy was employed to monitor the whole assembly process. It was demonstrated that the amino groups of APTS (aminopropyltriethoxyl silane)-modified MPS can be used to anchor formaldehyde to form novel reducing species (NHCH2OH), on which Ag(NH3)2NO3 could be in situ reduced. Monodispersed silver nanoparticles were thus obtained. In situ XRD and in situ TEM experiments were used to investigate and compare the thermal stabilities of silver nanoparticles on the external surface of silica gels (unconfined) and those located inside the channels of SBA-15 (confined). It was observed that unconfined silver nanoparticles tended to agglomerate at low temperatures (i.e., lower than 773 K). The aggregation of silver nanoparticles became more serious at 773 K. However, for those confined silver nanoparticles, no coarsening process was observed at 773 K, much higher than its Tammann temperature (i.e., 617 K). Only when the treating temperature was higher than 873 K could the agglomeration of those confined silver nanoparticles happen with time-varying via the Ostwald ripening process. The confinement of mesopores played a key role in improving the thermal stabilities of silver nanoparticles (stable up to 773 K without any observable coarsening), which is essential to the further investigations on their chemical (e.g., catalytic) properties.
In this report we characterized the longitudinal elasticity of single actin filaments manipulated by novel silicon-nitride microfabricated levers. Single actin filaments were stretched from zero tension to maximal physiological tension, P(0). The obtained length-tension relation was nonlinear in the low-tension range (0-50 pN) with a resultant strain of approximately 0.4-0.6% and then became linear at moderate to high tensions (approximately 50-230 pN). In this region, the stretching stiffness of a single rhodamine-phalloidin-labeled, 1-microm-long F-actin is 34.5 +/- 3.5 pN/nm. Such a length-tension relation could be characterized by an entropic-enthalpic worm-like chain model, which ascribes most of the energy consumed in the nonlinear portion to overcoming thermal undulations arising from the filament's interaction with surrounding solution and the linear portion to the intrinsic stretching elasticity. By fitting the experimental data with such a worm-like chain model, an estimation of persistence length of approximately 8.75 microm was derived. These results suggest that F-actin is more compliant than previously thought and that thin filament compliance may account for a substantial fraction of the sarcomere's elasticity.
We developed a miniature endoscope that is capable of rapid lateral scanning and is suitable for real-time forward-imaging optical coherence tomography (OCT). The endoscope has an outer diameter of 2.4 mm, consisting of a miniature tubular lead zirconate titanate (PZT) actuator, a single-mode fiber-optic cantilever, and a graded-index lens. Rapid lateral scanning at 2.8 kHz is achieved when the fiber-optic cantilever is resonated with the PZT actuator. This allows OCT imaging to be performed by fast lateral beam scanning followed by slow depth scanning, which is different from the conventional OCT imaging sequence. Real-time OCT imaging with the endoscope operated in the new image acquisition sequence at 6 frames/s is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.