A highly sensitive Gallium Nitride (GaN) diaphragm based micro-scale pressure sensor with an AlGaN/GaN heterostructure field effect transistor (HFET) deflection transducer has been designed and fabricated for high temperature applications. The performance of the pressure sensor was studied over a pressure range of 20 kPa, which resulted in an ultra-high sensitivity of ~0.76%/kPa, with a signal-to-noise ratio as high as 16 dB, when biased optimally in the subthreshold region. A high gauge factor of 260 was determined from strain distribution in the sensor membrane obtained from finite element simulations. A repeatable sensor performance was observed over multiple pressure cycles up to a temperature of 200 °C.