Large amounts of waste biomass are generated in sugar factories from the processing of sugar beets. After diffusion with hot water to draw the sugar from the beet pieces, a wet material remains called pulp. In this study, waste sugar beet pulp biomass was enzymatically depolymerized, and the obtained hydrolyzates were subjected to fermentation processes. Bioethanol, biomethane, and biohydrogen were produced directly from the substrate or in combined mode. Stillage, a distillery by-product, was used as a feedstock for anaerobic digestion. During biosynthesis of ethanol, most of the carbohydrates released from the sugar beet pulp were utilized by a co-culture of Saccharomyces cerevisiae Ethanol Red, and Scheffersomyces stipitis LOCK0047 giving 12.6 g/L of ethanol. Stillage containing unfermented sugars (mainly arabinose, galactose and raffinose) was found to be a good substrate for methane production (444 dm 3 CH 4 /kg volatile solids (VS)). Better results were achieved with this medium than with enzymatic saccharified biomass. Thermal pre-treatment and adjusting the pH of the inoculum resulted in higher hydrogen production. The largest (p < 0.05) hydrogen yield (252 dm 3 H 2 /kg VS) was achieved with sugar beet stillage (SBS). In contrast, without pre-treatment the same medium yielded 35 dm 3 H 2 /kg VS. However, dark fermentation of biohydrogen was more efficient when sugar beet pulp hydrolyzate was used.