The European Commission has recognized nanotechnologies as extremely promising for increasing competitiveness of different sectors of the economy. On account of climate changes and the quest for food security, they are an effective way of solving key problems in the agrarian sector. Nowadays nanotechnologies are widely used for creating nanofertilizers, nanoinsecticides, nanofungicides, nanoherbicides and other nanopreparations. Numerous researches affirm advantages of nanopreparations, which has helped them find a wide use in agricultural practice. At the same time, nanopreparations are the source of entry into the environment of nanoparticles (size less than 100 nm) which are characterized by large active surface and specific physical-chemical properties different from ordinary chemical substances. It is precisely this which determines their bioaccessibility, bioaccumulation and toxicity. Recently, data about toxicity of nanoparticles for human and natural ecosystems have been accumulated. The results of a great deal of research affirm that they break the processes of photosynthesis, transpiration, mitosis, miosis and have a negative influence on colouring agents, proteins and carbohydrates. Under their action, physiological processes of plant growth and development are disturbed, which take place mainly in root system. Nanoparticles are characterized by high bioaccessibility for soil organisms, they are toxic to earthworms and microorganisms and they influence circulation of carbon and nitrogen. Aquatic organisms have been shown to have high sensitivity to nanoparticles; toxic effect has been registered for fish, daphnids, water plants and microorganisms. Taking into consideration the high level of potential danger of nanopreparations used in crop cultivation, special notice should be paid to the development of eco toxicological research. At present, nanoecotoxicological approaches to assessment of the danger of nanomaterials and nanoparticles are absent. Development of reports on elaboration of quantitative and qualitative methods of analysis, and methods of modeling and prognostication of risks is only at the initial stage. The objective of this review is attracting attention to solving the problem of nanoecotoxicology, nanoagrochemicals and nanopesticides, which needs consolidated efforts of scientists, governmental organizations and business and is an obligatory condition for preventing the negative impact of nanomaterials on humans and the environment.