Recent advances in nanotechnology have enabled the synthesis and characterization of nanomaterials suitable for applications in the¯eld of biology and medicine. Due to their unique physicochemical properties, carbon-based nanomaterials such as fullerenes, metallofullerenes, carbon nanotubes and graphene have been widely investigated as multifunctional materials for applications in tissue engineering, molecular imaging, therapeutics, drug delivery and biosensing. In this review, we focus on the multifunctional capabilities of fullerenes and metallofullerenes for diagnosis and therapy. Speci¯cally, we review recent advances toward the development of fullerene-and metallofullerene-based magnetic resonance imaging (MRI) and X-ray imaging contrast agents, drug and gene delivery vehicles, and photodynamic therapy agents. We also discuss in vitro and in vivo toxicity, and biocompatibility issues associated with the use of fullerenes and metallofullerenes for biomedical applications.