Metal-graphene-metal photodetectors utilize photocurrent generated near the graphene/metal junctions and have many advantages including high speed and broad-band operation. Here, we report on photocurrent generation at ABA/ABC stacking domain junctions in tri-layer graphene with a responsivity of 0.18 A/W. Unlike usual metal-graphene-metal devices, the photocurrent is generated in the middle of the graphene channel, not confined to the vicinity of the metal electrodes. The magnitude and the direction of the photocurrent depend on the back-gate bias.Theoretical calculations show that there is a built-in band offset between the two stacking domains, and the dominant mechanism of the photocurrent is the photo-thermoelectric effect due to the Seebeck coefficient difference.