Two methyl-modified Al2O3/SiO2 xerogels, i. e. AIP-Al2O3/MSiO2 and ANN-Al2O3/MSiO2 xerogels, were prepared using aluminum isopropoxide and aluminum nitrate nonahydrate as the aluminum precursors, respectively. The appearance, density, viscosity, Gibbs activation energy for viscous flow and reaction rate constant of the sols were analyzed and compared. Their microstructures were characterized by means of powder X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and nitrogen adsorption–desorption measurements. The results show that the Al–O–Si bond is formed in the AIP-Al2O3/MSiO2 and ANN-Al2O3/MSiO2 xerogels. The ANN-Al2O3/MSiO2 sol has a smaller mean particle size and greater sol stability than the AIP-Al2O3/MSiO2 sol. Meanwhile, the ANN-Al2O3/MSiO2 xerogel has a smaller pore size and higher porosity. The total pore volume and specific surface area of the ANN-Al2O3/MSiO2 xerogel are 27.27% and 29.36% larger than those of the AIP-Al2O3/ MSiO2 sample, respectively. The saturated adsorption capacity of the ANN-Al2O3/MSiO2 xerogel to methylene blue is 7.15% larger than that of the AIP-Al2O3/MSiO2 xerogel.