The insertion of the surgical needle in soft tissue has involved significant interest in the current time because of its purpose in minimally invasive surgery (MIS) and percutaneous events like biopsies, PCNL, and brachytherapy. This study represents a review of the existing condition of investigation on insertion of a surgical needle in biological living soft tissue material. As observes the issue from numerous phases, like, analysis of the cutting forces modeling (insertion), tissue material deformation, analysis of the needle deflection for the period of the needle insertion, and the robot-controlled insertion procedures. All analysis confirms that the total needle insertion force is the total of dissimilar forces spread sideways the shaft of the insertion needle for example cutting force, stiffness force, and frictional force. Various investigations have analyzed all these kinds of forces during the needle insertion process. The force data in several measures are applied for recognizing the biological tissue materials as the needle is penetrated or for path planning. The deflection of the needle during insertion and tissue material deformation is the main trouble for defined needle placing and efforts have been prepared to model them. Applying existing models numerous insertion methods are established that are discussed in this review.