Poly(p-phenylene terephthalamide) (PPTA) is a high-performance polymer that has been utilized in a range of applications. Although PPTA fibers are widely used in various composite materials, laminar structures consisting of PPTA and ultra-high-molecular-weight polyethylene (UHMWPE), are less reported. The difficulty in making such composite structures is in part due to the weakness of the interface formed between these two polymers. In this study, a layered structure was produced from PPTA fabrics and UHMWPE films via hot pressing. To improve the interlayer adhesion, oxygen plasma was used to treat the PPTA and the UHMWPE surfaces prior to lamination. It has been found that while plasma treatment on the UHMWPE surface brought about a moderate increase in interlayer adhesion (up to 14%), significant enhancement was achieved on the samples fabricated with plasma treated PPTA (up to 91%). It has been assumed that both surface roughening and the introduction of functional groups contributed to this improvement.
Due to its desirable mechanical properties, compacted graphite iron (CGI) has been used to replace conventional gray cast iron (CI) in various applications, such as automotive engine blocks and cylinder heads. However, the poor machinability of CGI can lead to excessive tool wear and consequently high manufacturing costs. Various strategies have been developed to improve the machinability of CGI, including optimizing machining parameters and the development of novel metalworking fluids. In this study, machining of CGI was conducted using cubic boron nitride (cBN) tools under different cutting speeds, with both soluble and full-synthetic water-based metalworking fluids at different levels of sulfur addition and water dilution. The effects of the metalworking fluids on the tool wear behavior were examined. Results showed that at 200 m/min cutting speed, the soluble metalworking fluid at 4% dilution and 0.3% sulfur compound exhibited the best performance, with a cutting distance reaching 23.8 km. In contrast, the least effective soluble metalworking fluid at 9% dilution and 0.3% sulfur compound resulted in a 28.6% decrease in the cutting distance (17.0 km) compared to the best one. At a higher speed (300 m/min), the cutting distance for all metalworking fluids dropped to less than 6.0 km, with the full-synthetic metalworking fluid showing the shortest cutting distance of 4.8 km.
This study is aimed to evaluate the effects of coated surgical needles with composite polymers such as polydopamine (PDA), polytetrafluoroethylene (PTFE), and carbon. The coated needle’s lubrication properties were measured using 3 DOF force sensors and 3D robot system by the repetitive insertion in soft tissue materials. Needle durability is a measure of needle sharpness after repeated passage through high stiffness tissue materials. The composite coatings were shown to reduce the insertion force by ∼49% and retraction forces by ∼46% when tested using a bovine kidney. The surface roughness and the lateral friction force of the needle are measured using the Atomic Force Microscope (AFM). The adhesion energy of the different coating on the needle will be measured using a nano-scratch method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.