This study evaluated the changes in microbial activity in the course of time following the joint application of the herbicides S-metolachlor, foramsulfuron, and thiencarbazone-methyl to two soils (S1 and S2) under conventional tillage (CT) and non-tillage (NT) management in field conditions. The biochemical parameters of soil respiration (RES), dehydrogenase activity (DHA), microbial biomass (BIO), and the phospholipid fatty acid (PLFA) profile were determined at 1, 34, and 153 days during herbicide dissipation. In the absence of herbicides, all microbial activity was higher under NT than CT conditions, with higher or similar mean values for S1 compared to S2. A continuous decrease was detected for RES, while DHA and BIO recovered over time. In the presence of herbicides, a greater decrease in all microbial activity was detected, although the changes followed a similar trend to the one recorded without herbicides. In general, a greater decrease was observed in S1 than in S2, possibly due to the higher adsorption and/or lower bioavailability of herbicides in this soil with a higher organic carbon content. The decrease was also greater under CT conditions than under NT conditions because the herbicides can be intercepted by the mulch, with less reaching the soil. These changes involved evolution of the structure of the microbial community.