Fungal gluco-amylase is required for the production of sugars from starchy substrates. Commercially available fungal gluco-amylase is quite costly which makes the process uneconomical. This study was undertaken to standardize physico-chemical parameters for optimum production of gluco-amylases from spp. Two fungal cultures, i.e., and , were compared for gluco-amylase activity both under stationary and shake flask conditions. Among two fungal cultures, maximum gluco-amylase activity was shown by (243.09 U/ml) under stationary conditions as compared to (126.34 U/ml). Gluco-amylase activity of increases by 42.48% from 243.09 to 346.35 U/ml after optimization using response surface methodology, whereby a substrate concentration of 7%, yeast extract 0.25%, temperature 32.5 °C and pH 5.5 were found to be optimum for gluco-amylase production. Crude enzyme was compared with commercial enzyme and it was found that when 500 U of Glucoamylase ex. were inoculated into starch-supplemented minimal media (SSMM) liquefied using 2 g of fungal diastase, it increases the reducing sugar concentration from 2.19 to 21.15 mg/ml and a saccharification efficiency of 77.7% was achieved, whereas 1.5 ml of crude enzyme (extracted from) was able to produce 14.46 mg/ml of reducing sugars with a saccharification efficiency of 53.2%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.