Fly ash belite cement is a green, low carbon cementitious material, mainly composed of hydraulic minerals of dicalcium silicate and calcium aluminate. In this study, we used fly ash belite cement to control the setting time, hydration heat, strength, composition and microstructure of hydration products in Portland cement. Results showed that incorporating fly ash belite cement into Portland cement can shorten the setting time, accelerate hydration reaction speed, enhance early hydration heat release rate of silicate minerals and reduce total hydration heat. Moreover, replacing composite cement with 30% FABC causes the 90 d compressive strength of pastes and mortars to reach 107 and 46.2 MPa, respectively. The mechanical properties can meet the requirements of P·F 42.5 cement. During the hydration reaction process, clinker and Portland cement have a synergistic hydration effect. Notably, hydration of fly ash belite cement promotes the formation of C-S-H gel, Ettringite and calcium hydroxide, thereby significantly enhancing long-term strength. With the increase of FABC contents, the long-term strength would be improved with the densification of hydration products. The porosity has a great influence on the strength, and the high porosity was the main cause of the low early strength of FABC pastes. FABC and its composite cement show promise for mass concrete applications and can be applied as a setting agent for Portland cement.