A series of reactive copolymers with peroxide functionality (RCPFs) were synthesized via radical copolymerization of monomer mixtures in an organic solvent comprised of a peroxide monomer 5-(tert-butyl peroxy)-5-methylhex-1-en-3-yne, acrylamide, maleic anhydride, and butyl methacrylate. Peroxide functionality allows the RCPFs to initiate a variety of radical processes, including cross-linking of organic polymers. Hydrophilic monomer subunits (acrylamide and maleic anhydride) within the RCPF macromolecules promote cross-linking of water-soluble polymers. We aimed to investigate RCPF comonomer ratio and its effects on copolymerization kinetics and composition, as well as physico-chemical and colloidal properties. We also evaluated and characterized the kinetic parameters of the thermal decomposition of peroxide moieties in the synthesized RCPF. Findings revealed that RCPF possessed surface-active properties and reduced surface tension at its aqueous solutionair interface. The data indicated that the decomposition process complied with the first-order kinetics, and complex thermal analysis confirmed the presence of peroxide moieties. RCPFs' ability to cross-link water-soluble polymers was demonstrated on poly(acrylamide) and poly(vinyl alcohol).