In this paper, an iterative method to model the anisotropic lateral oxidation of circular structures is proposed and validated by confrontation to experimental data. The described model enables the efficient calculation of the temporal bi-dimensional evolution of the oxidation front shape, starting from a circular mesa, and progressing inward as a result of an anisotropic process combining an isotropic diffusion with an anisotropic reaction. The result of the developed model shows that the oxide aperture smoothly deforms from a circle to become more diamond-like, mimicking the experimental situation encountered when fabricating Vertical-Cavity Surface-Emitting Lasers (VCSELs) on (100) wafers or, more generally, when oxidizing circular mesas of aluminum-containing III-V semiconductor on similarly oriented substrates.