Abstract:The relationship between microstructure and tensile properties of an Nb-Ti microalloyed X90 pipeline steel was studied as a function of finish rolling temperature using a Gleeble 3500 simulator, an optical and scanning electron microscope, electron back scattered diffraction (EBSD), a transmission electron microscope (TEM) and X-ray diffraction. The results indicate that the microstructure is primarily composed of non-equiaxed ferrite with martensite/austenite (M/A) constituent dispersed at grain boundaries for the specimens with different finish rolling temperatures. With a decrease in the finish rolling temperature, the yield strength increases, following a significant increase in the grain refinement strengthening contribution and dislocation strengthening contribution, although the precipitation strengthening contribution decreases. The increasing yield ratio (YR) shows that the strain hardening capacity declines as a result of the microstructure evolution when decreasing the finish rolling temperature.