The objective of the current work was to parameterize the digestive elements of the model of Hill et al. (2008) using data collected from animals that were ruminally, duodenally, and ileally cannulated, thereby providing a better understanding of the digestion and metabolism of P fractions in growing and lactating cattle. The model of Hill et al. (2008) was fitted and evaluated for adequacy using the data from 6 animal studies. We hypothesized that sufficient data would be available to estimate P digestion and metabolism parameters and that these parameters would be sufficient to derive P bioavailabilities of a range of feed ingredients. Inputs to the model were dry matter intake; total feed P concentration (fPtFd); phytate (Pp), organic (Po), and inorganic (Pi) P as fractions of total P (fPpPt, fPoPt, fPiPt); microbial growth; amount of Pi and Pp infused into the omasum or ileum; milk yield; and BW. The available data were sufficient to derive all model parameters of interest. The final model predicted that given 75 g/d of total P input, the total-tract digestibility of P was 40.8%, Pp digestibility in the rumen was 92.4%, and in the total-tract was 94.7%. Blood P recycling to the rumen was a major source of Pi flow into the small intestine, and the primary route of excretion. A large proportion of Pi flowing to the small intestine was absorbed; however, additional Pi was absorbed from the large intestine (3.15%). Absorption of Pi from the small intestine was regulated, and given the large flux of salivary P recycling, the effective fractional small intestine absorption of available P derived from the diet was 41.6% at requirements. Milk synthesis used 16% of total absorbed P, and less than 1% was excreted in urine. The resulting model could be used to derive P bioavailabilities of commonly used feedstuffs in cattle production.