Polyolefins, including high-density polyethylene (HDPE) and isotactic polypropylene (iPP), account for over half of the worldwide plastics market and have wide-ranging applications. Recycling of these materials is hindered due to separation difficulties as co-mingled blends of HDPE and iPP often exhibit brittle mechanical behavior because phase separated domains detach under stress due to low interfacial adhesion. Motivated to improve mechanical properties of mixed recyclates during processing, this work examines the effect of shear on the crystallization kinetics and rheological properties of HDPE−iPP blends utilizing a combination of differential scanning calorimetry (DSC), rheo-Raman spectroscopy, polarized optical microscopy, and scanning electron microscopy (SEM). In the quiescent experiments, the crystallization temperature as a function of blend composition exhibits a distinct decrease when the iPP forms the droplet phase, as expected, due to fractionated crystallization. In the presence of shear, we find elongated domains due to high capillary number. Unexpectedly, we find a compositional dependence to the flow-induced crystallization (FIC) of iPP: stronger FIC is observed in all blends compared to the pure iPP. Moreover, the flow completely counteracts the reduced crystallization arising from fractionated crystallization, indicating that the flow is able to induce nucleation in droplets to an extent such that it offsets the reduction in active nucleating agents in finite size droplets. We attribute these effects to differing microflow fields in the various morphologies as the iPP domains deform under shear.