The numerical methods of CIP (Cubic Interpolation Pseudo-particle/Propagation) and C-CUP (CIP Combined Unified Procedure) are appropriate and numerically robust even in the direct simulation of turbulent combustible flows. Although these methods have many advantages in the numerical procedure, their accuracy and characteristics have not been evaluated in detail. In the present study, the ability of CIP was firstly examined by comparing it with classical methods in a direct numerical simulation of incompressible turbulent flow. Secondly, C-CUP was evaluated by direct simulations of a compressible-fluid, single-vortex convection problem and of the Aeolian tone. In the first cases, CIP was inferior to the classical method in the vortex shape reproduction. In the latter case, C-CUP showed an advantage in suppressing unrealistic pressure increase and satisfactorily simulated the sound pressure distribution. Furthermore, CIP and C-CUP were applied to numerical simulation of spray combustion in conjunction with applying classical methods in order to compensate the inferior points of CIP.