Partially defatted peanut flour has proven to exhibit excellent functional and nutritional properties in many foods. In this study, a peanut pancake instant mix was developed by replacing a portion of wheat flour with peanut flour; either 12% fat medium roast (12M) or 28% fat light roast (28L) peanut flours at various levels (20, 30, 40 and 50%) in a starting pancake formulation. Effect of peanut flour initial fat content and degree of roasting on physico-chemical properties such as viscosity of the batter, surface color, texture and composition of the pancakes were determined. In addition, the effect of microwave reheating time on moisture loss, bulk density and texture of the frozen peanut pancakes was investigated at 30% replacement level and compared with a commercial frozen pancake. Viscosity of the instant mix batter made with 12M peanut flour was higher than the control whereas 28L was lower than the control. All peanut pancakes were darker (lower L values) and browner (lower hue angle) than the control. Texture profile analysis properties such as hardness, cohesiveness and chewiness values decreased with increasing peanut flour replacement level; whereas, springiness values increased. Moisture, fat, ash and protein content were increased with increasing peanut flour replacement level. Pancakes made from 12M have higher protein content than the 28L samples at same level of replacement. Frozen peanut pancakes after microwave reheating showed significant moisture loss, increased bulk density and increased hardness and chewiness. At tested conditions a microwave reheating time of 20 or 30 s was sufficient to achieve desirable eating characteristics (moisture loss, density and texture) of peanut pancakes when compared to the commercial frozen pancakes or freshly prepared peanut pancakes. This study demonstrated that the instant peanut pancake mix has potential as a functional breakfast food item to replace regular wheat pancakes.