Due to its superior mechanical properties, graphene (Gr) has the potential to achieve high performance polymer-based nanocomposites. Previous studies have proved that defects in the Gr sheets could greatly reduce the mechanical properties of Gr, while the Stone-Wales (SW) defect was found to enhance the interfacial mechanical strength between Gr and epoxy. However, the combined effects of defects on the overall mechanical properties of Gr/epoxy nanocomposites have not been well understood. In this paper, the effect of the SW defect on the mechanical properties of Gr/epoxy nanocomposites was systematically investigated by using molecular dynamic simulations. The simulation results showed that the SW defect would degrade the mechanical properties of nanocomposites, including the Young’s modulus and in-plane shear modulus. Surprisingly, the transverse shear modulus could be remarkably enhanced with the existence of SW. The reinforcing mechanisms were mainly due to two aspects: (1) the SW defect could increase the surface roughness of the Gr, preventing the slippage between Gr and epoxy during the transverse shea; and (2) the nanocomposite with defective Gr enables a higher interaction energy than that with perfect graphene. Additionally, the effects of temperature, the dispersion and volume fraction of Gr were also investigated.