Forest ecosystems are important sinks for rising concentrations of atmospheric CO 2. In previous research, we showed that net primary production (NPP) increased by 23 ؎ 2% when four experimental forests were grown under atmospheric concentrations of CO 2 predicted for the latter half of this century. Because nitrogen (N) availability commonly limits forest productivity, some combination of increased N uptake from the soil and more efficient use of the N already assimilated by trees is necessary to sustain the high rates of forest NPP under free-air CO 2 enrichment (FACE). In this study, experimental evidence demonstrates that the uptake of N increased under elevated CO 2 at the Rhinelander, Duke, and Oak Ridge National Laboratory FACE sites, yet fertilization studies at the Duke and Oak Ridge National Laboratory FACE sites showed that tree growth and forest NPP were strongly limited by N availability. By contrast, nitrogen-use efficiency increased under elevated CO 2 at the POP-EUROFACE site, where fertilization studies showed that N was not limiting to tree growth. Some combination of increasing fine root production, increased rates of soil organic matter decomposition, and increased allocation of carbon (C) to mycorrhizal fungi is likely to account for greater N uptake under elevated CO 2. Regardless of the specific mechanism, this analysis shows that the larger quantities of C entering the below-ground system under elevated CO 2 result in greater N uptake, even in N-limited ecosystems. Biogeochemical models must be reformulated to allow C transfers below ground that result in additional N uptake under elevated CO 2 .global change ͉ net primary production