This chapter characterised the delamination behaviour of a quasi-isotropic quasi-homogeneous (QIQH) multidirectional carbon/epoxy-laminated composite. The delaminated surface constituted of 45 //0 layers. Specimens were tested using mode I double cantilever beam (DCB), mode II end-notched flexure (ENF) and mixed-mode I+II mixed-mode flexure (MMF) tests at constant crosshead speed of 1 mm/min. Results showed that the fracture toughness increased with the mode II component. Specifically, the mode I, mode II and mixed-mode I+II fracture toughness were 508.17, 1676.26 and 927.52 N/m, respectively. When the fracture toughness values were fitted using the Benzeggagh-Kenane (BK) criterion, it was found that the best-fit material parameter, η, was attained at 1.21. Furthermore, fibre bridging was observed in DCB specimens, where the steady-state fracture toughness was approximately 80% higher compared to the mode I fracture toughness. Finally, through scanning electron micrographs, it was found that there was resin-rich region at the crack tip of the specimens. In addition, fibre debonding of the 45 layer was found to be dominant in the DCB specimens. Significant shear cusps were noticed in the ENF specimens. As for the MMF specimens, matrix cracking and fibre debonding of the 0 layer were observed to be the major failure mechanisms.