The Taklamakan Desert in China's Xinjiang region faces severe heat conditions that cause rutting in asphalt pavements. In order to combat this issue, local construction management has been advo-cating for the utilization of low-grade asphalt with penetration levels between 20 and 50, to en-hance the pavement's resistance to rutting. However, there is limited research on the durability of low-grade asphalt under intense UV irradiation in the region. To this end, a multiscale investigation was conducted, examining three different types of asphalt (30#, 50#, and 70#), under various con-ditions such as virgin, UV aging, and Pressure Aging Vessel aging. Analytical techniques such as Atomic Force Microscope, Gel Permeation Chromatography, Fourier Transform Infrared Spec-troscopy, Dynamic Shear Rheology, and Bending Beam Rheometer were employed. The results revealed that the surface roughness of the three types of asphalt increased by 15.50% (30#), 5.99% (50#), and 2.70% (70#) after UV aging, compared to the virgin samples. Furthermore, the adhesion properties of lower-grade asphalt were less affected by UV aging. Weight-average molecular weight of the three types of asphalt increased significantly after UV aging, with a 26.96% increase in 30#, 51.92% increase in 50#, and 43.76% increase in 70# compared to the samples prior to UV aging. The 30# asphalt with higher large molecule content exhibited slower UV aging. The 30# asphalt also exhibited the smallest increase of C=O and S=O after UV aging among the three types of asphalt. The study also found that UV aging had a lesser effect on the high- and low-temperature perfor-mance of asphalt, compared to PAV aging. Overall, the effects of UV irradiation on various properties of 30# asphalt were less pronounced than those of 50# and 70# asphalt. These findings offer valuable insights into aging resistance in the Taklamakan Desert, benefiting road contractors and the academic community.