The application of pre-cast components in building structures has become increasingly widespread, with projects often utilizing steam curing methods. The utilization of pre-fabricated concrete has demonstrated the capacity to enhance construction efficiency. However, strength and durability issues arising from steam curing of concrete have become prominent considering the quality of concrete construction. The use of fly ash and slag in steam-cured concrete to improve its performance has gained extensive popularity. While research into single-blended mineral admixtures has been conducted with notable achievements, the study of steam-cured concrete with binary blended mineral admixtures remains relatively limited. This paper focuses on the mechanical properties and durability of steam-cured concrete with mineral admixtures (fly ash and slag), exploring the influence of mineral admixture ratios and steam-curing regimes on the mechanical properties and durability of concrete. The properties of the steam-cured concrete were further analyzed through compressive strength tests, mercury intrusion porosimetry, and thermogravimetric analyses. It was found that when fly ash and slag were added in equal proportions, the compressive strength and microstructure of the concrete were optimized. In addition, the optimized static resting time and constant temperature time should be controlled as 3 h and 6 h, respectively, to improve the compressive strength and microstructure of the steam-cured concrete.