This paper proposes a novel short-term wind power forecasting approach by mining the bad data of numerical weather prediction (NWP). Today's short-term wind power forecast (WPF) highly depends on the NWP, which contributes the most in the WPF error. This paper first introduces a bad data analyzer to fully study the relationship between the WPF error with several new extracted features from the raw NWP. Second, a hierarchical structure is proposed, which is composed of a K-means clustering-based bad data detection module and a neural network (NN)-based forecasting module. In the NN module, the WPF is fully adjusted based on the output of the bad data analyzer. Simulations are performed comparing with two other different methods. It proves that the proposed approach can improve the short-term wind power forecasting by effectively identifying and adjusting the errors from NWP.Index Terms-Artificial neural network, data adjustment, feature selection, numerical weather prediction, wind power forecast error.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.