Background. Freeze-thaw influences soil-dissolved nitrogen (N) pools due to variations in bacterial communities in temperate regions. The availability of soil water is important to soil biogeochemical cycles under frozen conditions. However, it is unclear how soil water content (SWC) mediates the effects of freeze-thaw on soil-dissolved N pools and bacterial communities. Method. In this study, freeze-thaw microcosms were incubated at three levels of SWC, including 10% (air-dried soils), 15% (natural SWC), and 30% (wet soils). In addition to measuring soil-dissolved N pools, variations in bacterial communities were examined using high-throughput sequencing. Results and Conclusions. Total dissolved N (TDN), NO3--N, NH4+-N, microbial biomass N (MBN), and net N mineralization rate (NNMR) were significantly influenced by SWC, freeze-thaw, and their interaction (NH4+-N excluded). N immobilization was inhibited under both low and high SWC, which was accompanied by varied bacterial community composition. However, only higher SWC substantially modified the freeze-thaw effects on the soil-dissolved N pools, characterized by a decrease in N mineralization (especially for the content of NO3--N and NNMR) and an increase in N immobilization (MBN). These scenarios could be significantly correlated to variations in bacterial community composition based on redundancy analysis, especially by species belonging to Bacteroidetes, Nitrospirae, Alphaproteobacteria, Gemmatimonadetes, and Verrucomicrobia (Spearman’s correlations). In conclusion, bacterial species passed through biotic (bacterial species) and abiotic filters (soil N pools) in response to freeze-thaw under varied SWC.