CaAl-LDHs and sodium dodecyl benzene sulfonate (SDBS) intercalated CaAl-LDHs (SDBS-CaAl-LDHs) was acquired by co-precipitation. The two samples were characterized by XRD, XPS, FT-IR, TG and SEM.The factors affecting adsorption (pH, adsorption time initial concentration) of Pb 2+ by two adsorbents were studied. The results showed that SDBS-CaAl-LDHs has higher adsorption ability for lead ions removal than that of CaAl-LDHs. Kinetic data for lead ions were in keeping with pseudo-2nd-order model, the adsorption isotherms followed Langmuir and Freundlich isotherm model for CaAl-LDHs. The adsorption by SDBS-CaAl-LDHs were in keeping with the pseudo-second-order kinetic and Langmuir model, suggesting lead ions were chemical adsorption. Adsorption was thought to form through Pb species in the precipitates, such as formation of hydroxides and carbonates for lead ions by XRD analysis. Therefore, based on the structural and morphological features, as well as XRD, XPS and SEM, the lead ion adsorption mechanism on SDBS-CaAl-LDHs involved the electrostatic attraction, precipitation, complexation and ion exchange. The Langmuir adsorption capacities for SDBS-CaAl-LDHs were found as 797.63, 828.76, 854.29 mg×g −1 at 293k, 303k, 313k, respectively, when the pH is about 5.2, and thus, making it a highly economical adsorbent for the treatment of contaminated water.